Termodinamica (1 parte) ĐR2009

Calore assorbito o ceduto

(Q positivo : calore che entra nel sistema; Q negativo : calore che esce dal sistema)

$$Q = mc(T_2 - T_1)$$

$$Q_p = nC_p(T_2 - T_1)$$

$$Q_{V} = n C_{V}(T_{2}-T_{1})$$

Equazione di Stato:

Gas perfetto
$$pV = nR$$

Gas perfetto
$$pV = nRT$$
 ($pV = NkT$) $\left(\frac{P_0V_0}{T_0} = \frac{P_1V_1}{T_1}\right)$ (1cal = 4,186J)

$$R = 8.31 \text{ joule/(mole °K)} = 0.0821 \text{ litri atm/(mole °K)}$$

n numero di moli
$$n = \frac{m}{M} = \frac{N}{N_0}$$

$$N_0 = 6.02 \cdot 10^{23} \; \mathrm{mol^{-1}}$$
 (numero di Avogadro) cost. di Botzmann $k = \frac{R}{N_0} = 1.38 \cdot 10^{-23} \; \mathrm{J^{\circ}K^{-1}}$

$$k = \frac{R}{N_0} = 1,38.10^{-23} \, \mathrm{J}^{\circ} \mathrm{K}^{-1}$$

 $V_0 = 22.41 \text{ lt}$ vol di una mole di gas ideale (a T = 0°C e p = 1 atm)

Primo principio della Termodinamica per qualsiasi trasformazione

$$Q = \Delta U + L$$

$$\Delta U = nC_V \Delta T$$

(ΔU e' la variazione di energia interna e non dipende dal tipo di trasformazione al contrario del calore scambiato e del lavoro fatto ==> U e' una funzione di stato, mentre Q e L non sono funzioni di stato)

Relazione fra i calori specifici molari
$$C_P - C_V = R$$
 (relazione di Mayer)

gas perfetto monoatomico	C _V = 3/2 R	$C_P = 5/2 R$	$\gamma = C_P / C_V = 5/3$
gas perfetto biatomico	C _V = 5/2 R	C _P = 7/2 R	$\gamma = C_P / C_V = 7/5$

Trasformazione	Variazione Energia interna	Calore	Lavoro
	$\Delta U = 0$	Q = L	$L = nRT \ln \left(\frac{V_2}{V_1} \right) = nRT \ln \left(\frac{p_1}{p_2} \right)$
Isocora $\frac{p_2}{T_2} = \frac{p_1}{T_1}$	$\Delta U = nC_v \Delta T$	$Q = \Delta U$	L= 0
$\frac{V_2}{T_2} = \frac{V_1}{T_1}$	$\Delta U = nC_v \Delta T$	$Q = \Delta U + L = nC_p \Delta T$	$L = p \Delta V = nR\Delta T$
Adiabatica $p_1V_1^{\gamma}=p_2V_2^{\gamma}$ $T_1V_1^{\gamma-1}=T_2V_2^{\gamma-1}$ $T_1p_1^{\frac{1-\gamma}{\gamma}}=T_2p_2^{\frac{1-\gamma}{\gamma}}$	$\Delta U = -L$	Q = 0	$L = \frac{p_2 V_2 - p_1 V_1}{1 - \gamma}$ $= -\Delta U =$ $= -nC_V \Delta T$
Ciclica	$\Delta U = 0$	Q = L	L= Area interna della figura